Posts Tagged ‘electric’

Comparison of the Frequency Spectra and the Frequency Decay between Telecaster & Stratocaster

In electrics, Theorie on April 14, 2017 at 12:08 pm

from Johannes Husinsky, October 2002

The project’s goal was to experimentally determine the tonal differences between three different electrical guitars and different pick-ups on one guitar. To do so, I used a computer interface and data acquisition program based on LabView, which computes the frequency spectra using Fast Fourier Transform software.
Connecting a guitar to a computer and picking a string is easy, whereas the analysis of the spectra can be challenging to analyze. First, the frequency spectrum depends on the location of picking the string. For example, if one picks a string exactly in its middle, theoretically just the fundamental is excited; whereas if a string is picked next to the bridge, a high number of harmonics can be observed. Furthermore, if the string is picked on a node of a certain harmonic, this harmonic is not excited.

Second, the output of an electrical guitar also depends on the location of the pick-up. The closer a pick-up is located next to the bridge, the brighter the sound of the guitar will be, whereas a pick-up nearer to the neck will output a more mellow and bassy sound. This is caused by the magnitude of the harmonics amplitudes in different locations on the guitar. For example, the fundamentals maximum magnitude is in the middle of the string and the second harmonics ones are, ideally, on the first and the third quarter of the string. Since the neck pick-up is located closer to those maxima than the bridge pickup, it registers a higher amount of these harmonics than the bridge pick-up does.

Third, picking a guitar with a pick (plectrum) results in a brighter sound than picking a guitar with fingers. The reason is on the one hand the width of the picking element, which causes the string to oscillate, on the other hand the different rigidity characteristics of a pick and a finger. The width of a finger plucking the string is often larger than the width of a pick. This results in a sine wave-like shape of the string, whereas a string picked with a pick generates a shape comparable to a sawtooth wave, which has a higher harmonic content than a sine wave-like one. Furthermore, because of the plasticity of a finger, the high harmonics of the string are absorbed if a string is plucked with a finger. It takes more time until the finger is in is initial shape again,
whereas the pick reaches its initial shape quite quickly.
Set up for the measurements:
Since the voltage output of higher harmonics was very small, I just plotted the frequency spectrum up to the 4th harmonic. To avoid a node of any of these harmonics being over one of the pick-ups, a capo was set on the third fret. In addition, the string (the d-string was used for all measurements) was picked only on positions where harmonics up to the fourth were excited. I made measurements of three different guitars: A Fender Telecaster, a Fender Stratocaster, and an electrical guitar built by Mako.
The guitar built by Mako has a humbucking neck pick-up and a humbucking bridge pick-up, therefore the signal output is higher compared to the Fender guitars. For these measurements, both pick-ups were used together.
Prior to the measurements, Prof. Errede suggested to make measurements on the one hand with the non-picked strings damped, on the other hand with them free, to evaluate, if the vibrating string affects the others and these again re-affect the originally vibrating string. Unfortunately this cannot be seen in the charts, although it is very likely that this happens. Therefore I will only display the charts of the first group.

  • d-string with capo in 3rd fret, picked with finger, other strings were not damped


  • d-string with capo on 3rd fret, picked with plectrum


It can be seen that the higher harmonics are excited moreso using a pick than using one’s finger:


The lack of higher harmonics between 700 and 1400 Hz is due to the location where the string was picked.

Fender Telecaster

The Fender Telecaster has one single-coil neck and one single-coil bridge pickup.
For the following measurements both pick-ups were again used together.

  • d-string with capo on 3rd fret, picked with finger


It can be seen in the frequency decay chart, that the tune of a picked string is initially slightly higher. Whereas the 350 Hz and 352 Hz slopes are initially almost equal, the 350 Hz slope is significantly higher as time goes on.

  • d-string with capo on 3rd fret, picked with plectrum


Fender Stratocaster

The Fender Stratocaster has three single-coil pick-ups, a bridge, a middle, and a neck pick-up. Since the switch allows, among others, to combine either the bridge and the middle, or the middle and the neck pick-up, both switch positions were used for the measurements.

  • d-string with capo on 3rd fret, string picked with finger, bridge and middle pick-up together


  • d-string with capo on 3rd fret, string picked with pick, bridge and middle pick-up together


  • d-string with capo on 3rd fret, string picked with pick, bridge and middle pick-up together


  • d-string with capo on 3rd fret, string picked with plectrum, neck and middle pick-up together


As expected, the frequency spectrum of the neck and middle pick-up is different from the spectrum of the bridge and middle pick-up. Because of the position of the bridge pick-up, the output of higher harmonics is higher than the output of the fundamental, as can easily be seen in the charts, whereas the spectrum of the neck and middle pick-up verifies the bassier sound, since the fundamental has the highest signal output.
Another characteristic of the frequency decay of the Fender Stratocaster can be seen, if the decay charts are looked at. Independent of the pick-up combinations and the way the string was plucked, there is a blip in the decay of the 2nd and the 3rd harmonic which can only be observed at the Fender Stratocaster:


Why different different electrical guitars sound different can be seen in their corresponding frequency spectra. Plucking a string with a plectrum results in the excitement of higher harmonics, whereas the frequency spectrum of a finger-picked string mainly consist of the fundamental and a few higher harmonics. A difference in the frequency spectrum can also be seen for different pick-ups. The spectrum depends on pick-up location. The harmonic spectrum includes only the fundamental and a few harmonics (neck pick-up) or even very high harmonics (bridge pick-up). The audible result of different pick-ups is either a bright and sharp sound (bridge) or a bassy and mellow one (neck). On order to gain a sound comparable to an acoustic guitar, the combination of as much pick-ups as possible is recommended.




Understanding Audio Levels

In Effects, electrics, Gears on June 29, 2016 at 5:36 pm

A basic understanding of the general audio levels mentioned in this article will help you avoid the common mistakes often made when connecting audio devices together. We are going to talk about three different general levels of audio signals.  The names of the three general audio levels are speaker level, line level and microphone level. For simplicity, the different audio levels are described in volts. For an understanding of decibel levels used in audio, see the articles on decibels starting here.

Speaker Level

A speaker needs a few volts of electrical audio signal to make enough movement in the speaker to create a sound wave that we can hear. Small speakers need only a few volts, but large speakers need 50-100 volts to make a loud sound.

Line Level

A speaker is connected to an amplifier. Think of your HiFi amplifier at home. What plugs into your amplifier? DVD player, CD player, radio/tuner, video camera. All these devices plug into the “line in” or “Aux in” of your amplifier.  “Line IN”, “Aux IN” and “Line OUT” all have an electrical audio signal at line level.RCa-cables-300x164 You are probably aware of the standard red and white leads used in HiFi equipment, these all use line level. Other plugs are also used for line level. Line level is about half a volt to one (½ – 1) volt. It is the job of the amplifier to amplify the half to one volt of line level, up to the 10 volts or more of speaker level.



Note: A common error is to connect plugs and sockets together just because they fit. Don’t assume audio level based just on the type of plug being used. The same type of  plug can be used for different purposes (and different audio levels).

Microphone Level

Ok , so we have line level (about ½ – 1 volt) which goes into an amplifier to make it up to speaker level (about 10 volts or above).  What audio level do you think Mic level is? How much voltage do you think comes out of a microphone, as a result of you speaking into it? Answer: Stuff all!

The output voltage of a microphone is very low. It is measured in milli-volts, that is 1/1000th of a volt. A mic can give as little as 1 mV, or up to 100 mV, depending on how loud you speak into it. That is not very much. So what do you think is going to happen if you plug a mic directly into the line in of an amplifier? Answer: A very low level of muffled sound if anything.

Mic Pre-amps

The amplifier is wanting line level, ½ – 1 volt to produce enough signal to make the speaker work properly. But the mic is only producing milli-volts. So what is needed is a small microphone amplifier that amplifies the audio level from mic level to line level. This should go between the microphone and the amplifier. Because it is for the microphone and it is before the main amp, it is called a mic pre-amp. A mic pre-amp amplifies the milli-volts from a microphone up to line level.preamp-schematic2


Mic pre-amps are normally built into devices designed for connecting to a microphone. Equipment like an audio mixer, a digital recorder, a video camera or a computer – all these may have mic level inputs as well as line level input, or just a mic level input. .

The picture on the right shows for each input on this mixer there is a line level input mixer-inputs-270x300(labelled Line 3 and Line 4), as well as a microphone pre-amp (labelled MIC PRE).

Obviously a microphone plugs into the mic input, as the mic inputs are connected to the in-built mic pre-amps.

A line level device would obviously plug into the line in socket.

But what if your mixer (or camera/recorder) only has a microphone input, and you need to connect a line level source to it? This would result in the line level (½ – 1 volt) being connected to the input of the mic pre-amp. The trouble is, the mic preamp is expecting only a few milli-volts. The resulting sound will be very distorted as the mic pre-amp is completely overloaded.


So how can we do this? How do we connect a line level to a mic level input? We have to reduce the line level down to mic level.  The technical word for this is to attenuate the signal. As an amplifier amplifies, or boosts the signal; an attenuator attenuates, or reduces the signal.

You can buy attenuators at a music shop, they are called DI boxes. DI stands for Direct Injection, meaning you can directly inject a line level into the mic input without any problems. It is also possible to make an attenuator, possibly with variable attenuation, to cope with different levels. It is also possible to buy or build a fixed attenuator in a cable. This is a cable with resistors built-in to the plugs to attenuate the line level down to mic level – this is very useful for a video camera or portable digital recorder.

Audio Level Summary

There are three main audio signal levels: mic level (millivolts), line level (around 1 volt) and speaker level (around 10 volts or more). The rule is, only plug speakers into the speaker socket of an amplifier; only line level into the line in of any equipment; and only mic level in the mic input of your mixer, camera or laptop.  The most common cause of  audio distortion comes from not understanding the different levels, and how to connect them all together.

Practical Example 1

Scenario: A keyboard (electric piano) located on the stage needs to connect to a mixer located at the back of the hall, with a microphone multi-core cable connecting between the two.

Issue: The output of the keyboard is at line level, and the microphone input at the mixer requires mic level. (There is also the issue of different plugs and balanced/unbalanced inputs but these are the topics of other articles).

Solution: Use a basic DI box available from most music or electronic stores. A DI box acts as an attenuator which reduces the line level of the keyboard to mic level for direct connection to the mixer (via the multi-core cable). The DI box also overcomes the issues of matching plugs and going from unbalanced to balanced  – so this is a perfect solution. This solution also works for connecting electric guitars, electronic drums and DVD players.


Scenario: The output (line level) of an audio mixer needs to connect to a digital camera or digital recorder which only has a microphone input.

Issue: The output of the mixer is at line level, and the microphone input of the camera/recorder requires mic level.

Solution: A basic DI box could be used, but this would require an input lead, and output lead and the DI box  – a lot to carry in your camera bag. A neater solution is to have a lead with a 40dB attenuator built into it. This will reduce the line level from the mixer by a factor of 100, which will bring the line level down to a reasonable mic level to connect directly to the microphone socket of the camera/recorder.

pdf document for print: understanding-Audio-levels

All comes from Geoff the Grey Greek, thanks to him

What does “line level” mean?

In electrics, Gears on June 29, 2016 at 4:57 pm

A device that operates at line level either has a very strong output signal, or only functions properly when you feed a very strong signal into it. Examples of line level outputs include mic preamps, mixers, the “line out” of an amp, and some effects-loop “send” jacks. Inputs needing this level include power amps, most rackmount signal processors, and some effects-loop “returns”. This is in contrast to “instrument level” which is what typically comes direct from a guitar or bass, and “mic level” which is the typical output of a microphone or DI box. Both are much lower than line level.

Generally speaking if you send an instrument-level signal into a device that needs line-level input, you will get weak sound, inadequate processing, and probably extra noise as you boost the signal to compensate. If you send a line-level signal into a device that’s meant for instrument or mic-level input, you will get distortion. The effects loop on many amps is designed to both send and receive line-level signals, so putting a typical pedal in the loop will often get noise, weakness, and distortion. You may find some exceptions though: either an amp loop that can operate at instrument level, or a pedal that can operate at line level.

The “loudness” or “strength” of an audio signal inside your rig is measured in AC voltage. However the numbers you’ll read in an amp’s manual or on a website are usually given in dB or dBu, not voltage. The term dB (decibel) by itself means the amount a signal level changes in relation to wherever it started. When you see gear specs that say “-10 dBv” or “+4 dBu”, they are telling you how much lower or higher the average output is relative to a specific fixed reference voltage. That voltage is usually either 1.0 V, referred to as “0 dBv”, or 0.78 V, referred to as “0 dBu”. The terms dBv, dBu, and dBm have different values, but they all have that third letter that signifies a specific reference point; you can use them to calculate voltage levels.

Some common levels you’ll see:

  • +4 dBu is “professional” line level, common in modern pro recording gear, and it is about 1.25 V.
  • 0 dBv is an average line level, typical output from rackmount guitar/bass preamps.
  • -10 dBv is “consumer” line level, common with older and cheaper recording gear.
  • -20 dBu is roughly in the neighborhood of a typical instrument’s output.
  • -30 dBu is again in the neighborhood of a typical microphone or DI box’s output.

However, instruments and microphones can have a very wide range of output levels in reality, so it is most practical to think of instrument-level and mic-level in/outputs as just “a lot lower than line level”, rather than calculating specific dB amounts.
It may even be necessary sometimes to boost one “line level” output by using another gain stage, for example if the first output is specified for -10 dBv and the device you’re trying to drive is designed to operate best with a +4 dBu input level. Remember that decibel numbers by themselves are just ratios in reference to a specific starting point, not a fixed value; in other words, 35 dB gain from one device can result in the same actual level as 50 db gain, or 10 dB, or even -20 dB from another device–it all depends on what values each separate engineer started with. 35 dB gain from a boost pedal is a lot, but it may not necessarily get you up to the +4 dBu level needed to drive most power amps, for example. So look for that third letter after the dB to know that you’re dealing with a fixed reference point, and therefore a firm value for the highest average voltage output. +4 dBu is the same level all around the world.

from OvniLab

Basic electric guitar circuits

In electrics, manufacturing, Theorie on June 12, 2016 at 4:10 pm

(Pickups) by Kurt Prange

Passive (i.e. battery-free) electric guitar circuits are relatively simple and the possibilities for customization are endless. A basic understanding of pickups, potentiometers, capacitors and switches is all you need to get creative and take more control of your instrument’s voice on an electronic level.
Where does the electric guitar signal come from?
Pickups are transducers that convert the mechanical energy of a vibrating guitar string into electrical energy by way of electromagnetic induction. It is a fundamental concept studied in physics and electronics that a changing magnetic field will generate a current through a coil of wire. The electric guitar pickup uses permanent magnets and pole pieces to form a steady magnetic field in the vicinity of each individual guitar string. An opposite magnetic polarity is induced in the metallic (steel core) guitar string when mounted above its respective pole piece and when the string moves, the otherwise steady magnetic field changes accordingly. Wire is wrapped around the poles thousands of times to form a coil within the magnetic field to pick up an induced current and voltage.


The output signal from the pickups is AC (alternating current) because the direction of the current alternates, producing a positive voltage when the string moves in one direction and a negative voltage when the string moves in the opposite direction.
The previous drawing illustrates the electrical and magnetic function of a single-coil pickup. Some pickups might use six permanent magnets in place of the six pole pieces to create the magnetic field, but the idea is the same: create a steady magnetic field around a coil in proximity to the guitar string. The name “single-coil” pickup becomes more significant when compared to the humbucker or “dual-coil” pickup.


Pickups: Single-Coil vs. Humbucker
The first successful guitar pickup was developed in the early 1930’s by Rickenbacker® to help amplify Hawaiian lap steel guitars which were popular at the time. The first pickups were single-coils and while they do a good job of picking up the guitar signal they are also susceptible to picking up interference from nearby electrical devices. The Gibson® humbucker (US Patent 2896491) was developed in the 1950’s to eliminate the “hum noises” resulting from electromagnetic interference. The humbucker uses two coils and a pair of pole pieces (having opposite magnetic polarities of each other) for each string. The coils are wound and connected to each other in such a way that the current produced by the moving guitar string in the two coils adds up (in-phase), while the current produced by electromagnetic interference in the two coils cancels (out-of-phase). Not only does the humbucker drastically reduce noise from interference, but it also has a different characteristic sound. The single-coil pickup is commonly considered to have a thin, clear and bright (more treble) sound, while the humbucker is known to have a full, but dark (less treble) sound with more overall signal output.
Connecting Multiple Pickups
When connecting more than one pickup, it’s important to follow the manufacturer’s color codes and wiring diagrams so that the phase relationship is correct. The phase relationship of a pickup is determined by the winding direction of the coil and the polarity of the magnets. The two coils of the traditional humbucker are connected in series with the phase relationship shown in Fig. 1. Most modern Stratocaster® style guitars with three single-coil pickups are supplied with a reverse wound/reverse polarity middle pickup for a parallel hum canceling effect when the guitar is switched to a two pickup position (e.g. neck & middle pickup together) as shown in Fig. 2.


Pickup Specs
Most replacement electric guitar pickups have limited electrical specifications given on the packaging or on-line which can give you a basic idea of the relative output level and how bright or dark a similar pickup will sound.
• DC Resistance: This can be measured directly with an ohm meter and gives you an idea of how many turns of wire the coil has. If the same gauge of wire was used for two pickups, then the pickup with fewer turns to the coil will have a lower resistance which, in general, makes for a lower output level and a brighter sound.
• Inductance: Inductance is the ability of an inductor (or coil) to store energy in a magnetic field. A higher inductance makes for a higher output level and a darker sound.
• Peak Frequency: This is the frequency beyond which the output level begins to fall dramatically. A higher peak frequency would make for a brighter pickup.
Variety is the spice of tone.
Guitar pickups are a vital component of your tone and replacing them is something that most guitarists can learn to do themselves. Using high quality pickups can go a long way to bringing new life and excitement to your playing experience. There are hundreds of pickup manufacturers and thousands of pickups to choose from. Whether you’re looking for a hotter pickup, trying to capture a beloved vintage tone or seeking single-coil sound in a noiseless package, brands like DiMarzio®, Seymour Duncan®, Lace®, Porter®, Fender®, Gibson® and many others offer a solution.

Potentiometers and Tone Capacitors
What is a Potentiometer?
Potentiometers, or “pots” for short, are used for volume and tone control in electric guitars. They allow us to alter the electrical resistance in a circuit at the turn of a knob.


It’s useful to know the fundamental relationship between voltage, current and resistance known as Ohm’s Law when understanding how electric guitar circuits work. The guitar pickups provide the voltage and current source, while the potentiometers provide the resistance. From Ohm’s Law we can see how increasing resistance decreases the flow of current through a circuit, while decreasing the resistance increases the current flow. If two circuit paths are provided from a common voltage source, more current will flow through the path of least resistance.



We can visualize the operation of a potentiometer from the drawing above. Imagine a resistive track connected from terminal 1 to 3 of the pot. Terminal 2 is connected to a wiper that sweeps along the resistive track when the potentiometer shaft is rotated from 0° to 300°. This changes the resistance from terminals 1 to 2 and 2 to 3 simultaneously, while the resistance from terminal 1 to 3 remains the same. As the resistance from terminal 1 to 2 increases, the resistance from terminal 2 to 3 decreases, and vice-versa.
Tone Control: Variable Resistors & Tone Capacitors
Tone pots are connected using only terminals 1 and 2 for use as a variable resistor whose resistance increases with a clockwise shaft rotation. The tone pot works in conjunction with the tone capacitor (“cap”) to serve as an adjustable high frequency drain for the signal produced by the pickups. The tone pot’s resistance is the same for all signal frequencies; however, the capacitor has AC impedance which varies depending on both the signal frequency and the value of capacitance as shown in the equation below. High frequencies see less impedance from the same capacitor than low frequencies. The table below shows impedance calculations for three of the most common tone cap values at a low frequency (100 Hz) and a high frequency (5 kHz).


When the tone pot is set to its maximum resistance (e.g. 250kΩ), all of the frequencies (low and high) have a relatively high path of resistance to ground. As we reduce the resistance of the tone pot to 0Ω, the impedance of the capacitor has more of an impact and we gradually lose more high frequencies to ground through the tone circuit. If we use a higher value capacitor, we lose more high frequencies and get a darker, fatter sound than if we use a lower value.
Volume Control: Variable Voltage Dividers
Volume pots are connected using all three terminals in a way that provides a variable voltage divider for the signal from the pickups. The voltage produced by the pickups (input voltage) is connected between the volume pot terminals 1 and 3, while the guitar’s output jack (output voltage) is connected between terminals 1 and 2. From the voltage divider equation below we can see that if R1 is 0Ω and R2 is 250kΩ, then the output voltage will be equal to the input voltage (full volume). If R1 is 250kΩ and R2 is 0Ω, then the output voltage will be zero (no sound).


Potentiometer Taper
The taper of a potentiometer indicates how the output to input voltage ratio will change with respect to the shaft rotation. The two taper curves below are examples of the two most common guitar pot tapers as they would be seen on a manufacturer’s data sheet. The rotational travel refers to turning the potentiometer shaft clockwise from 0° to 300° as in the previous visual representation drawing.


How do you know when to use an audio or linear taper pot?
It’s really a matter of personal taste when it comes to volume control. Notice how the rate of change is much more dramatic on the audio taper pot when traveling back from 100% to 50% rotation. This means that the same amount of rotation would give you a more intense volume swell effect with an audio taper than with a linear taper. Using a linear taper volume pot would give you a more gradual change in volume which might feel like you have more fine control with which to ease back the volume level.
For tone control, it’s basically standard practice to use an audio taper. The effect of the tone circuit is not very noticeable until the resistance gets pretty low and you can get there quicker with an audio taper.
How do you know what value of potentiometer to use?
The actual value of the pot itself does not affect the input to output voltage ratio, but it does alter the peak frequency of the pickup. If you want a brighter sound from your pickups, use a pot with a larger total resistance. If you want a darker sound, use a smaller total resistance. In general, 250K pots are used with single-coil pickups and 500K pots are used with humbucking pickups.
Specialized Pots
Potentiometers are used in all types of electronic products so it’s a good idea to look for potentiometers specifically designed to be used in electric guitars. If you do a lot of volume swells, you’ll want to make sure the rotational torque of the shaft feels good to you and most pots designed specifically for guitar will have taken this into account. When you start looking for guitar specific pots, you’ll also find specialty pots like push-pull pots, no-load pots and blend pots which are all great for getting creative and customizing your guitar once you understand how basic electric guitar circuits work.

(Switches and Output Jacks)
Now let’s take a look at how pickup selector switches and output jacks work.
Pickup Selector Switches
Most guitars have more than one pickup and each one has unique tonal characteristics depending on its placement, construction and materials. The pickup selector switch allows the guitar player to choose between different pickups or a combination of them. The pickup placed close to the guitar neck has a warm, smooth tone with more bass content and is frequently referred to as the “rhythm” pickup, while the pickup placed close to the bridge has a sharper, biting sound with more treble content and is frequently referred to as the “lead” pickup. Of course, these are just generalizations. You might find that the neck pickup sounds sweeter for your leads or maybe you get more rhythm crunch from the bridge pickup. The subjective nature of tone is one of the main reasons it’s empowering to be able to customize your own instrument.


People are often confused by the switch terminology of “poles” and “throws”, but it’s actually quite simple. The switch allows us to change the electrical continuity between its terminals. The “pole” is the name of the terminal whose continuity is switched between one or more throws. As shown in the DPDT (double pole double throw) switch drawing above, in position “1” there is continuity between “Pole A” and “A Throw (1)”. In position “2” there is continuity between “Pole A” and “A Throw (2)”. This A-side alone could be thought of as an SPDT switch because it has a single pole with two throws, but because we have an additional B-side the entire switch has two poles with each pole having its two respective throws (i.e. DPDT). The standard Telecaster switch could be considered DP3T because it has two poles with each one having three throw terminals. The standard modern Stratocaster switch adds two intermediate switch positions “2” and “4” (as shown below) where each pole has electrical continuity with two of its respective throw terminals at once.


The standard Les Paul switch is shown below. In position “1” P(A) has continuity with T(A), but P(B) is disconnected from T(B). In position “2” both P(A) and P(B) have continuity with their respective throws T(A) and T(B). In position “3” P(B) has continuity with T(B), but P(A) is disconnected from T(A). The ground terminal is used to connect to the common ground along with the potentiometers, output jack and the bridge in order to eliminate popping and buzzing noises.


The Output Jack
The output jack allows us to connect the signal from the guitar to an amplifier. The standard guitar output uses a ¼” mono jack having two terminals (as shown below) which make contact with the mono ¼” plug end of the guitar cable. The “tip” terminal is connected to the output signal and the “sleeve” terminal is connected to the guitar’s common ground. This is standard for amps and effects pedals, too.
Wiring Diagrams
It’s easy to find electric guitar wiring diagrams on-line through the websites of guitar and pickup manufacturers. There are also a lot of popular modifications out there that you might like to try out. Once you understand the basics of how these circuits work, you can even get creative and customize an original circuit that suits your style best. You won’t have to feel locked into your standard set up ever again. If you come across a new trick that you think you might like, heat up your soldering iron and try it out.


article from:
Kurt Prange (BSEE) is the Sales Engineer for Amplified Parts in Tempe, AZ. Kurt began playing guitar at the age of nine in Kalamazoo, MI. He is a guitar DIY’er and tube amp designer who enjoys helping other musicians along in the endless pursuit of tone.


Document for print here: Basic electric guitar circuits

Gibson “Dirty Fingers” humbucker

In Accessories, electrics on July 7, 2014 at 1:04 pm

dirty finger
The Gibson “Dirty Fingers” humbucker is an accurate replica of the famous super-hot humbucker introduced by Gibson in the 1970s.

Appropriately named, the Gibson “Dirty Fingers” pickup is manufactured with three powerful ceramic magnets to produce massive output for maximum in-your-face output without compromising the original tone of your guitar in any way. Whether you’re crunching hefty rhythm parts in a dropped tuning or peeling the paint off the wall with a blistering lead, the Gibson “Dirty Fingers” pickup puts your sound out front where it belongs. The pickup’s overwound yet balanced coils also feature adjustable pole pieces, which allows you to fine tune the output of each individual string. If you want maximum output and sustain, this is your pickup. Definitely not for the faint of heart. The Dirty Fingers also features shielded, four-conductor wiring for series, parallel or split coil operation, and is fully wax potted to eliminate any chance of microphonic feedback.

Output: 14

Position: Both

Magnet: Ceramic

Wiring: 4-Conductor (Also availble in Quick Connect™)

Details: Gibson’s Dirty Fingers pickups are also grabbing attention of hi-def shredders everywhere! Unique sounds, uniquely Gibson.

Price: $165.19
Weight: 0.50 LBS

more on Telecaster wiring diagrams

In electrics, manufacturing, telecaster project on May 11, 2014 at 4:04 pm

Control plate wiring diagram (Standard 3-way switch)




 Control plate wiring diagram (Oak Grigsby 3-way switch)


from Northwest Guitars FAQs

more on pots and capacitors

In electrics, manufacturing on May 11, 2014 at 3:58 pm

Potentiometers – Which should I use, and why?

The first thing to consider when choosing pots is whether you want to use Linear pots (Alpha A) or Logarithmic pots (Alpha B)

Linear pots (Alpha B) give a true representation of the output, (so 1 on the dial is 10% of the output, 5 is 50% and 10 is 100%). This means they’re a good all purpose pot that can be used on both tone and volume.

Logarithmic pots (alpha A or Audio Taper) offer very little control from 1 – 5 (jumping for 0% to 60 or 70% very quickly). As a tone pot their quite handy when you consider that, from 5 to 10, your covering less ground, giving you much more control over your sound. Considering very few of us roll the tone down past 5, the trusty Logarithmic pot still has its uses when fine tuning your sound.

Fender and Gibson use Logarithmic pots for most of their products (usually CTS) and get good results, so at the end of the day it all comes down to what you prefer from a guitar. More control over the full range, or more control over the top/bottom end.

250K or 500K?
As a quick and easy rule of Thumb, we use this guide.

500K = bright sounding
250K = warm, vintage sounding

Problems can arise when you’re running a Humbucker in the same guitar as a Single Coil, but these are the results we’ve found.

500K = warm HB, bright SC
250K = muddy HB, warm SC

Which capacitors should I choose?

If you’re looking for a cheap and easy way to modify the sound of your guitar then changing the Capacitors is something to consider.

Below are the most common cap values, as found in both Fender and Gibson guitars

.022 µf
Our personal favourite Cap size, and certainly the most popular. These caps produce a good balance between Bass, Middle and Treble; Plenty of mid range without compromising on the extreme ends of the spectrum. Absolutely perfect for single coils and fitted as standard on almost all Fender Strats.

.033 µf
Giving a slightly fuller sound than the 0.022s, these caps cut out a small amount of the bright tones, but boast a very strong mid range that carries through; great if you’re getting drowned out by the rest of a band.

.047 µf
These are as far as your really want to go with your guitar (or bass). Nearly all the bright top end is gone, leaving behind plenty of bass and middle. Great for full blown distortion. We prefer to use these with Humbuckers, and we recently fitted them to a ’62 Vintage Jazz Bass.

from Northwest Guitars FAQs

Seymour Duncan – STL52/STR52

In Accessories, electrics on April 14, 2014 at 3:30 pm

 Five-Two™ for Tele STL52 and STR52

tone chart | dimensions stl52-1 | dimensions str52-1 | wiring instructions

application Extremely balanced true single-coil pickup developed for Nashville studio players. Recommended for traditional country, country pop, blues, and classic rock.

description Tele® players often complain that their low strings sound “mushy” and their high strings are too bright – especially in the bridge position. The Five-Two concept corrects this with Alnico 5 magnets on the three low strings and Alnico 2 magnets on the three high strings. The result is an all-around, extremely well-balanced pickup with traditional output and vintage appointments such as vulcanized fibre bobbins, formvar wire, vintage magnet stagger and waxed cloth hookup cable. Rhythm model comes with chrome plated brass cover.

complete setup Available for both rhythm and lead positions. Rhythm is RW/RP for hum canceling when using both pickups together.

guitars For all well-balanced instruments. Works equally well with maple and rosewood fingerboards.

Brent Mason, Paul Martin / Oak Ridge Boys, Dean Parks, Michael Fath

Seymour Duncan – Les Paul electrical schematic

In electrics on April 9, 2014 at 9:20 am


2 micros, 2 volumes, 2 Tonalités, commutateur 3 voix

ressources: Singlecoil web site

In Accessories, electrics, Gears, manufacturing on April 6, 2014 at 12:42 am


excellent web site: Singlecoil, just go  and check 🙂

 This is the chapter about cool guitar modding projects that will help you to enhance your guitar with a minimum of work and money. Most of the mods are very simple and not really new, but as you know the old-fashioned and simple things always work best 😉 A good way to practise is to buy a used and cheap guitar and make it the modding guitar. Here you can try, practise and test all the things. If you like the mod, perform it on your real guitar and have fun !


  The real Les Paul vintage wiring and some tricks (PDF, 540kb)

You have a good Les Paul guitar but it don´t sounds like the guitars from the famous Burst slingers ? Here is how you can convert your Les Paul into a vintage sounding, roaring monster. Thanks to Udo Pipper from G&B for publishing the vintage wiring diagrams of the tone pots. You can purchase tested and selected pots and caps in our Webshop